N23N
13.09.2020 04:26
Геометрия
Есть ответ 👍

Один угол прямоугольного треугольника равен 60° а разность между гипотенузой и меньшим катетом равна 2,75 см. найдите гипотезу и меньший катет.
можно с рисунком и сразу решением. и по быстрей

268
314
Посмотреть ответы 1

Ответы на вопрос:

brankjs
4,4(73 оценок)

Решаем по элементы произвольного треугольника abc обычно обозначаются так: bc, ca, ab — стороны; a, b, c — их длины; α, β, γ — величины противолежащих углов; ha, ma, la — высота, медиана и биссектриса, выходящие из вершины a; r — радиус описанной окружности, r — радиус вписанной окружности; s — площадь, p — полупериметр. отметим, что в отдельных обозначения могут отличаться от стандартных. теорема 1 (теорема пифагора). в прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы, то есть c2 = a2 + b2, где c — гипотенуза треугольника. теорема 2. для прямоугольного треугольника (рис. 1) верны следующие соотношения: a = c cos β = c sin α = b tg α = b ctg β, где c — гипотенуза треугольника. теорема 3. пусть ca и cb — проекции катетов a и b прямоугольного треугольника на гипотенузу c, а h — высота этого треугольника, опущенная на гипотенузу (рис. 2). тогда справедливы следующие равенства: h2 = ca∙cb, a2 = c∙ca, b2 = c∙cb. теорема 4 (теорема косинусов). для произвольного треугольника справедлива формула a2 = b2 + c2 – 2bc cos α. теорема 5. около всякого треугольника можно описать окружность и притом только одну. центр этой окружности есть точка пересечения серединных перпендикуляров, проведенных к сторонам. центр описанной окружности лежит внутри тре­угольника, если треугольник остроугольный; вне треугольника, если он тупоугольный; на середине гипотенузы, если он прямоугольный (рис. 3). теорема 6 (теорема синусов). для произвольного треугольника (рис. 4) справедливы соотношения теорема 7. во всякий треугольник можно вписать окружность и притом только одну (рис. 5). центр этой окружности есть точка пересечения биссектрис трех углов треугольника. центр вписанной окружности лежит всегда внутри треугольника. теорема 8 (формулы для вычисления площади треугольника). 4 последняя формула называется формулой герона. теорема 9 (теорема о биссектрисе внутреннего угла). биссектриса внутреннего угла треугольника (рис. 6) делит противоположную сторону на части, пропорциональные прилежащим сторонам треугольника, то есть b : c = x : y. теорема 10 (формула для вычисления длины биссектрисы) (см. рис. 6) . теорема 11 (формула для вычисления длины биссектрисы). теорема 12. медианы треугольника пересекаются в одной точке и делятся в этой точке на отрезки, длины которых относятся как 2 : 1, считая от вершины (рис. 7). теорема 13 (формула для вычисления длины медианы). доказательства некоторых теорем доказательство теоремы 10. построим треугольник abc и проведем в нем биссектрису ad (рис. 8). пусть cd = x и db = y. применим к треугольникам abd и acd теорему косинусов: bd2 = ab2 + ad2 – 2∙ab∙ad∙cos ∠bad; cd2 = ac2 + ad2 – 2∙ac∙ad∙cos ∠cad. или, что то же самое, выразим из каждого неравенства и приравняем полученные результаты: применив теперь к треугольнику abc теорему о биссектрисе внутреннего угла, получим, что

Популярно: Геометрия